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NUMBER SYSTEMS 
AND CODES

CHAPTER

2.1 INTRODUCTION

We all are familiar with the number system in which an ordered set of ten symbols—0, 1, 2, 3, 4, 5, 6, 7, 
8, and 9, known as digits—are used to specify any number. This number system is popularly known as the 
decimal number system. The radix or base of this number system is 10 (number of distinct digits). Any 
number is a collection of these digits. For example, 1982.365 signifi es a number with an integer part equal to 
1982 and a fractional part equal to 0.365, separated from the integer part with a radix point (.) also known as 
decimal point. There are some other systems also, used to represent numbers. Some of the other commonly 
used number systems are: binary, octal and hexadecimal number systems. These number systems are widely 
used in digital systems like microprocessors, logic circuits, computers, etc. and therefore, the knowledge of 
these number systems is very essential for understanding, analysing and designing digital systems.

As discussed in Chapter 1, computers and other digital circuits use binary signals but are required to 
handle data which may be numeric, alphabets or special characters. Therefore, the information available 
in any other form is required to be converted into suitable binary form before it can be processed by digital 
circuits. This means that the information available in the form of numerals, alphabets and special characters 
or in any combination of these must be converted into binary format. To achieve this, a process of coding is 
employed whereby each numeral, alphabet or special character is coded in a unique combination of 0s and 1s 
using a coding scheme, known as a code. The process of coding is known as encoding.

There can be a variety of coding schemes (codes) to serve different purposes, such as arithmetic operations, 
data entry, error detection and correction, etc. In digital systems, a large number of codes are in use. Selection 
of a particular code depends on its suitability for the purpose. In one digital system, different codes may be 
used for different operations and it may be necessary to convert data from one code to another code. For this 
purpose, code converter circuits are required which will be discussed later.

2.2 NUMBER SYSTEMS

In general, in any number system there is an ordered set of symbols known as digits with rules defi ned 
for performing arithmetic operations like addition, multiplication, etc. A collection of these digits makes a 
number which in general has two parts—integer and fractional, set apart by a radix point (.), that is
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Integer portion Fractional portion
N

d d d d d d d d d1 2 1 0 1 2

b
n n i f mf f f f

=
- - - - - -] g 1 2 344444 44444 1 2 34444 4444  (2.1)⋅

↑
Radix
point

where N = a number
 b = radix or base of the number system
 n = number of digits in integer portion
 m = number of digits in fractional portion
 dn 1 = most signifi cant digit (msd)
 d m = least signifi cant digit (1sd)

and

 0  (di or d f)  b  1

The digits in a number are placed side by side and each position in the number is assigned a weight 
or index of importance by some predesigned rule. Table 2.1 gives the details of commonly used number 
systems.

2.3 BINARY NUMBER SYSTEM

The number system with base (or radix) two is known as the binary number system. Only two symbols are 
used to represent numbers in this system and these are 0 and 1. These are known as bits. This system has 
the minimum base (0 is not possible and 1 is not useful). It is a positional system, that is every position is 
assigned a specifi c weight.

Table 2.2 illustrates counting in binary number system. The corresponding decimal numbers are given in 
the right-hand column. Similar to decimal number system, the left-most bit is known as the most signifi cant 
bit (MSB) and the right-most bit is known as the least signifi cant bit (LSB). Any number of 0s can be added 
to the left of the number without changing the value of the number. In the binary number system, a group of 
four bits is known as a nibble, and a group of eight bits is known as a byte.

Characteristics of Commonly Used Number SystemsTable 2.1
- - - - - - -

Weight assigned
to position

Base or
radix (b)

Symbols used
(d

i
 or d

f
)Number system i   f Example

Binary 2 0, 1 2i    2 f 1011.11
Octal 8 0, 1, 2, 3, 4, 5, 6, 7 8i   8 f 3567.25
Decimal 10 0, 1, 2, 3, 4, 5, 6, 7, 10i   10 f 3974.57

8, 9
Hexadecimal 16 0, 1, 2, 3, 4, 5, 6, 7,

8, 9, A, B, C, D, E, F 16i   16 f 3FA9.56
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2.3.1 Binary-to-Decimal Conversion

Any binary number can be converted into its equivalent decimal number using the weights assigned to each 
bit position as given in Table 2.1.

4-bit Binary Numbers and Their Corresponding Decimal NumbersTable 2.2
- - - - - - -

Binary number Decimal number
B3 B2 B1 B0 D1 D0

0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 0 2
0 0 1 1 0 3
0 1 0 0 0 4
0 1 0 1 0 5
0 1 1 0 0 6
0 1 1 1 0 7
1 0 0 0 0 8
1 0 0 1 0 9
1 0 1 0 1 0
1 0 1 1 1 1
1 1 0 0 1 2
1 1 0 1 1 3
1 1 1 0 1 4
1 1 1 1 1 5

Example 2.1

Find the decimal equivalent of the binary number (1 1 1 1 1)2.

Solution

The equivalent decimal number is
 = 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 1 × 20

 = 16 + 8 + 4 + 2 + 1
 = (31)10

To differentiate between numbers represented in different number systems, either the corresponding 
number system may be specifi ed along with the number or a small subscript at the end of the number may 
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Example 2.2

Determine the decimal numbers represented by the following binary numbers:

(a) 110101 (b) 101101 (c) 11111111 (d) 00000000

Solution

(a) (110101)2 = 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20

 = 32 + 16 + 0 + 4 + 0 + 1
 = (53)10
(b) (101101)2 = 32 + 0 + 8 + 4 + 0 + 1
 = (45)10
(c) (11111111)2 = 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1
 = (255)10
(d) (00000000)2 = (0)10

Example 2.3

Determine the decimal numbers represented by the following binary numbers:

(a) 101101.10101 (b) 1100.1011 (c) 1001.0101 (d) 0.10101

Solution

(a) (101101.10101)2 = 1 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 + 1 × 2 1 + 0 × 2 2 + 1 × 2 3 + 0 × 2 4 + 1 × 2 5

  = 32 + 0 + 8 + 4 + 0 + 1 + 2
1  + 0 + 8

1  + 0 + 
32

1

 = (45.65625)10
(b) (1100.1011)2 = 8 + 4 + 0 + 0 + 0.5 + 0 + 0.125 + 0.0625
 = (12.6875)10
(c) (1001.0101)2 = 8 + 0 + 0 + 1 + 0 + 0.25 + 0 + 0.0625
 = (9.3125)10
(d) (0.10101)2 = 0.5 + 0 + 0.125 + 0 + 0.03125
 = (0.65625)10

2.3.2 Decimal-to-Binary Conversion

Any decimal number can be converted into its equivalent binary number. For integers, the conversion is 
obtained by continuous division by 2 and keeping track of the remainders, while for fractional parts, the 

be added signifying the number system. For example, (1000)2 represents a binary number and is not one 
thousand.

JAIN, R. P. (2009). Modern digital electronics. ProQuest Ebook Central <a onclick=window.open('http://ebookcentral.proquest.com','_blank')
         href='http://ebookcentral.proquest.com' target='_blank' style='cursor: pointer;'>http://ebookcentral.proquest.com</a>
Created from inflibnet-ebooks on 2021-09-23 07:45:15.

C
op

yr
ig

ht
 ©

 2
00

9.
 T

at
a 

M
cG

ra
w

-H
ill

. A
ll 

rig
ht

s 
re

se
rv

ed
.



Modern Digital Electronics32
- - - - - 

Example 2.4

Convert (13)10 to an equivalent base-2 number.

Solution

Thus, (13)10 = (1101)2

Quotient

13

2
6 1

6

2
3

1 1

1

1 1 1

3

2

1

2

0

0

0

Remainder

Example 2.5

Convert (0.65625)10 to an equivalent base-2 number.

Solution

Thus, (0.65625)10 = (0.10101)2

22222

01 1 0 1

0.65625

1.31250 1.25000 0.50000 1.000000.62500

0.31250 0.62500 0.25000 0.50000

conversion is affected by continuous multiplication by 2 and keeping track of the integers generated. The 
conversion process is illustrated by the following examples.
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Example 2.6

Express the following decimal numbers in the binary form:

(a) 25.5 (b) 10.625 (c) 0.6875

Solution

(a) Integer part

Therefore, (25)10 = (11001)2

Fractional part

i.e., (0.5)10 = (0.1)2
Therefore, (25.5)10 = (11001.1)2

(b) Integer part (10)10 = (1010)2

 Fractional part

i.e., (0.625)10 = (0.101)2
Therefore, (10.625)10 = (1010.101)2

Quotient
25
2
12
2
6
2
3
2
1
2

1

1

3

6

12

0

1

0

0

1

1

1 0 0 1

Remainder

2
0.5

1

1.0

222

01 1

0.625

1.250 1.0000.500

0.250 0.500
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(c)

Therefore, (0.6875)10 = (0.1011)2

2222

01 1 1

0.6875

1.3750 1.5000 1.00000.7500

0.3750 0.7500 0.5000

2.4 SIGNED BINARY NUMBERS

2.4.1 Sign-Magnitude Representation

In the decimal number system a plus (+) sign is used to denote a positive number and a minus ( ) sign for 
denoting a negative number. The plus sign is usually dropped, and the absence of any sign means that the 
number has positive value. This representation of numbers is known as signed number. As is well known, 
digital circuits can understand only two symbols, 0 and 1; therefore, we must use the same symbols to 
indicate the sign of the number also. Normally, an additional bit is used as the sign bit and it is placed as 
the most signifi cant bit. A 0 is used to represent a positive number and a 1 to represent a negative number. 
For example, an 8-bit signed number 01000100 represents a positive number and its value (magnitude) is 
(1000100)2 = (68)10. The left most 0 (MSB) indicates that the number is positive. On the other hand, in the 
signed binary form, 11000100 represents a negative number with magnitude (1000100)2 = (68)10. The 1 in the 
left most position (MSB) indicates that the number is negative and the other seven bits give its magnitude. 
This kind of representation for signed numbers is known as sign-magnitude representation. The user must 
take care to see the representation used while dealing with the binary numbers.

Example 2.7

Find the decimal equivalent of the following binary numbers assuming sign-magnitude representation of the binary 
numbers.

(a) 101100 (b) 001000 (c) 0111 (d) 1111

Solution

(a) Sign bit is 1, which means the number is negative.

Magnitude = 01100 = (12)10
  ` (101100)2 = ( 12)10

(b) Sign bit is 0, which means the number is positive.

Magnitude = 01000 = 8
  ` (001000)2 = (+8)10

(c) (0111)2 = (+7)2
(d) (1111)2 = ( 7)2
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2.4.2 One’s Complement Representation

In a binary number, if each 1 is replaced by 0 and each 0 by 1, the resulting number is known as the one’s 
complement of the fi rst number. In fact, both the numbers are complement of each other. If one of these 
numbers is positive, then the other number will be negative with the same magnitude and vice-versa. For 
example, (0101)2 represents (+5)10, whereas (1010)2 represents ( 5)10 in this representation. This method is 
widely used for representing signed numbers. In this representation also, MSB is 0 for positive numbers and 
1 for negative numbers.

Example 2.8

Find the one’s complement of the following binary numbers.

(a) 0100111001 (b) 11011010

Solution

(a) 1011000110 (b) 00100101

Example 2.9

Represent the following numbers in one’s complement form.

(a) +7 and 7 (b) +8 and 8 (c) +15 and 15

Solution

In one’s complement representation,
(a) (+7)10 = (0111)2  and ( 7)10 = (1000)2
(b) (+8)10= (01000)2 and ( 8)10 = (10111) 2
(c) (+15)10 = (01111)2 and ( 15)10 = (10000)2

From the above examples, it can be observed that for an n-bit number, the maximum positive number 
which can be represented in 1’s complement representation is (2n 1  1) and the maximum negative number 
is  (2n 1  1).

2.4.3 Two’s Complement Representation

If 1 is added to 1’s complement of a binary number, the resulting number is known as the two’s complement 
of the binary number. For example, 2’s complement of 0101 is 1011. Since 0101 represents (+5)10, therefore, 
1011 represents ( 5)10 in 2’s complement representation. In this representation also, if the MSB is 0 the 
number is positive, whereas if the MSB is 1 the number is negative. For an n-bit number, the maximum 
positive number which can be represented in 2’s complement form is (2n 1  1) and the maximum negative 
number is 2n 1. Table 2.3 gives sign-magnitude, 1’s and 2’s complement numbers represented by 4-bit 
binary numbers. From the table, it is observed that the maximum positive number is 0111 = + 7, whereas the 
maximum negative number is 1000 =  8 using four bits in 2’s complement format.
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It is also observed that the 2’s complement of the 2’s complement of a number is the number itself.

Sign-Magnitude, 1’s and 2’s Complement Representation Using Four BitsTable 2.3
- - - - - - -

Binary number
Decimal number Sign-magnitude One’s complement Two’s complement

0 0000 0000 0000
1 0001 0001 0001
2 0010 0010 0010
3 0011 0011 0011
4 0100 0100 0100
5 0101 0101 0101
6 0110 0110 0110
7 0111 0111 0111
8 — — 1000
7 1111 1000 1001
6 1110 1001 1010
5 1101 1010 1011
4 1100 1011 1100
3 1011 1100 1101
2 1010 1101 1110
1 1001 1110 1111
0 1000 1111 —

Example 2.10

Find the 2’s complement of the numbers:

(i) 01001110 (ii) 00110101

Solution

0 0 1 1 0 1 0 1
1 1 0 0 1 0 1 0

Number
1’s complement
Add 1

(ii)

1
1 1 0 0 1 0 1 1

 (i) Number 0 1 0 0 1 1 1 0
  1’s complement 1 0 1 1 0 0 0 1
  Add 1 1
   1 0 1 1 0 0 1 0
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From the above example, we observe the following:
If the LSB of the number is 1, its 2’s complement is obtained by changing each 0 to 1 and 1 to 0 except 1. 
the least-signifi cant bit.
If the LSB of the number is 0, its 2’s complement is obtained by scanning the number from the LSB to 2. 
MSB bit by bit and retaining the bits as they are up to and including the occurrence of the fi rst 1 and 
complement all other bits.

Example 2.11

Find two’s complement of the numbers:

 (i) 01100100 (iii) 11011000
(ii) 10010010 (iv) 01100111

Solution

Using the rules of conversion given above, we obtain

2’s Complement

2’s Complement

(i)  Number

(ii)  Number

2’s Complement
(iii)  Number

2’s Complement
(iv)  Number

000 00 111
001 11 100

011 01 000
010 10 111

001 11 001
000 10 010

110 00 111
101 11 000

Example 2.12
Represent ( 17)10 in
  (i) Sign-magnitude,
 (ii) one’s complement,
(iii) two’s complement representation.

Solution

The minimum number of bits required to represent (+17)10 in signed number format is six.

` (+17)10 = (010001)2

Therefore, ( 17)10 is represented by

  (i) 110001 in sign-magnitude representation.
 (ii) 101110 in 1’s complement representation.
(iii) 101111 in 2’s complement representation.
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2.5 BINARY ARITHMETIC

We all are familiar with the arithmetic operations such as addition, subtraction, multiplication, and division of 
decimal numbers. Similar operations can be performed on binary numbers; infact, binary arithmetic is much 
simpler than decimal arithmetic because here only two digits, 0 and 1 are involved.

2.5.1 Binary Addition

The rules of binary addition are given in Table 2.4.

Rules of Binary AdditionTable 2.4
- - - - - - -

Augend Addend Sum Carry Result
0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 0 1 10

In the fi rst three rows above, there is no carry, that is, carry = 0, whereas in the fourth row a carry is 
produced (since the largest digit possible is 1), that is, carry = 1, and similar to decimal addition it is added 
to the next higher binary position.

Example 2.13

Add the binary numbers:

(i) 1011 and 1100  (ii) 0101 and 1111

Solution

(i) (ii)1 1 1 1 1
1

01111

(+) (+)

carry carry

carry

0

0 0
1 1

1

(1) (1) (1)

1 0

0
1

0

1 1 0 0

Example 2.14

Add the binary numbers:

0 1 1 0 1 0 1 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1
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From the above example, we observe the following:

 (i) if the number of 1’s to be added in a column is even then the sum bit is 0, and if the number of 1’s to be 
added in a column is odd then the sum bit is 1.

(ii) Every pair of 1’s in a column produces a carry (1) to be added to the next higher bit column.

2.5.2 Binary Subtraction

The rules of binary subtraction are given in Table 2.5.

Solution

` The sum = 1 1 1 1 1 0 0 1 0

1 Two pair of 1’s in the previous
column
one pair of 1’s in the previous
column

Carry Even number of 1’s in column
odd number of 1’s in column

01
(1)(1)(1)1(1)(1)(1)

01
1

01
0000000

0

1000000
1
01001111

1111
1

1

1

11
1

Minuend Subtrahend Difference Borrow
0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

Rules of Binary SubtractionTable 2.5
- - - - - - -

Except in the second row above, the borrow = 0. When the borrow = 1, as in the second row, this is to be 
subtracted from the next higher binary bit as it is done in decimal subtraction.
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2.5.3 Binary Multiplication 

Binary multiplication is similar to decimal multiplication. In binary, each partial product is either zero 
(multiplication by 0) or exactly same as the multiplicand (multiplication by 1). An example of binary 
multiplication is given below:

Example 2.15

Perform the following subtraction:

Solution

Here, in columns 1 and 2, borrow = 0 and in column 3 it is 1. Therefore, in column 4 first subtract 0 from 1 and from 
this result obtained subtract the borrow bit.

Column 4

3

2
1

(–)

Difference1

0
1

0

1
1

1

1
0

0

0
1 Minuend

Subtrahend

Example 2.16

Multiply 1001 by 1101.

Solution

In a digital circuit, the multiplication operation is performed by repeated additions of all partial products to obtain 
the final product.

×
Multiplicand
Multiplier

Partial Products

1

1

1
11

1 1 1

1

1 1
1
1

1

0

0

0
0

0
0 0 0 0

00
0

0 011

0

Final Product

I
II
III
IV

–
1 1 1

1 10
0

0
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2.6 2’S COMPLEMENT ARITHMETIC

Digital circuits are used for performing binary arithmetic operations. It is possible to use the circuits designed 
for binary addition to perform the binary subtraction also if we can change the problem of subtraction to 
that of an addition. This concept eliminates the need of additional circuits for subtraction, rather the same 
adder circuits are used for both the operations. This makes design of arithmetic circuits very convenient and 
cheaper. For this purpose, 2’s complement representation discussed in Section 2.4.3 is used.

2.6.1 Subtraction Using 2’s Complement

Binary subtraction can be performed by adding the 2’s complement of the subtrahend to the minuend. If a 

than the subtrahend) and is in 2’s complement form.

Example 2.18

Perform binary subtraction using 2’s complement representation of negative numbers.

Solution

.

2’s complement of subtrahend

Discard final carry

Minuend7
–5

2.5.4 Binary Division

Binary division is obtained using the same procedure as decimal division. An example of binary division is 
given below:

Example 2.17

Solution
Quotient

DividendDivisor
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2.6.2 Addition/Subtraction in 2’s Complement Representation

The addition/subtraction of signed binary numbers can most conveniently be performed using 2’s complement 
representation of both the operands. This is the method most commonly used when these operations are 
performed using digital circuits and microprocessors.

The final carry = 0. Therefore, the answer is negative and is in 2’s complement form. 2’s complement of
1110 = 0010
Therefore, the answer is ( 2)10.

Minuend

– 2 01

(ii) 05 1 0
0

1
2’s complement of subtrahend–7 01

1 1
(+) 1

Example 2.19

Perform the following operations using 2’s complement method:

(i) 48  23 (ii) 23  48 (iii) 48  ( 23) (iv)  48  23

Use 8-bit representation of numbers.

Solution

(i) 2’s complement representation of +48 = 00110000
  2’s complement representation of 23 = 11101001
  48 + ( 23)

(ii) 2’s complement representation of + 23 = 0 0 0 1 0 1 1 1
   2’s complement representation of  48 = 1 1 0 1 0 0 0 0
   23  48 = 23 + ( 48)

Discard Carry

00000
0 0 0

00000

0 11
1 1 1 1 1

1111

(+)
+ 25 = + 25

48
+ (–23)

48 – (–23) = 48 + 23 

1 1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

23

48

+ (–48)

+ 71

+ (23)

– 25

+ 71

–25

0

0
0

0
0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

(iii)

(+)

(+)
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From the above example, we observe the following:

(a) If the two operands are of the opposite sign, the result is to be obtained by the rule of subtraction using 
2’s complement (Sec. 2.6.1)

(b) If the two operands are of the same sign, the sign bit of the result (MSB) is to be compared with the sign 
bit of the operands. In case the sign bits are same, the result is correct and is in 2’s complement form. If 
the sign bits are not same there is a problem of overfl ow, i.e. the result can not be accommodated using 
eight bits and the result is to be interpreted suitably. The result in this case will consist of nine bits, i.e. 
carry and eight bits, and the carry bit will give the sign of the number.

2.7 OCTAL NUMBER SYSTEM

The number system with base (or radix) eight is known as the octal number system. In this system, eight 
symbols, 0, 1, 2, 3, 4, 5, 6, and 7 are used to represent numbers. Similar to decimal and binary number systems, 
it is also a positional system and has, in general, two parts: integer and fractional, set apart by a radix (octal) 
point (.). Any number can be expressed in the form of Eq. (2.1) with b = 8 and 0  (di or d f)  7.The weights 
assigned to the various positions are given in Table 2.1. For example, (6327.4051)8 is an octal number.

2.7.1 Octal-to-Decimal Conversion

Any octal number can be converted into its equivalent decimal number using the weights assigned to each 
octal digit position as given in Table 2.1.

(iv)  – 48 – 23 = (– 48) + (– 23) 

+ (– 23)

– 71

Carry be ignored

11
1 1 1

111

1

1

1
1

11– 71

– 48 00
0

0

0
0

0

00
0

0

(+)

Example 2.20

Convert (6327.4051)8 into its equivalent decimal number.

Solution

Using the weights given in Table 2.1, we obtain

 (6327.4051)8 = 6 × 83 + 3 × 82 + 2 × 81 + 7 × 80 + 4 × 8 1

 + 0 × 8 2 + 5 × 8 3 + 1 × 8 4

 = 3072 + 192 + 16  + 7 + 
8

4  + 0 + 
512

5  + 
4096

1

 = (3287.5100098)10
Thus, (6327.4051)8 = (3287.5100098)10
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2.7.2 Decimal-to-Octal Conversion

The conversion from decimal to octal (base-10 to base-8) is similar to the conversion procedure for base-10 
to base-2 conversion. The only difference is that number 8 is used in place of 2 for division in the case of 
integers and for multiplication in the case of fractional numbers.

Example 2.21

(a) Convert (247)10 into octal
(b) Convert (0.6875)10 into octal
(c) Convert (3287.5100098)10 into octal

Solution

(a) 

Thus, (247)10 = (367)8

(b)

Thus, (0.6875)10 = (0.54)8

(c) Integer part:

Thus, (3287)10 = (6327)8

Fractional part:

Thus (0.5100098)10  (0.4051)8
Therefore, (3287.5100098)10 = (6327.4051)8

247
8

30
8
3
8

RemainderQuotient

3 6 7

730

63

30

0.6875 0.5000

4.0000

5 4

5.5000
× 8× 8

6 3 2 7

74103287/8
51410/8
651/8
06/8

2
3
6

RemainderQuotient

0.5100098

4 0

4.0800784
× 8

0.0800784

0.6406272
× 8

0.6406272

5.1250176
× 8

0.1250176

1.0001408
× 8

5 1
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From the above examples we observe that the conversion for fractional numbers may not be exact. In 
general, an approximate equivalent can be determined by terminating the process of multiplication by eight 
at the desired point.

2.7.3 Octal-to-Binary Conversion

Octal numbers can be converted into equivalent binary numbers by replacing each octal digit by its 3-bit 
equivalent binary. Table 2.6 gives octal numbers and their binary equivalents for decimal numbers 0 to 15.

Binary and Decimal Equivalents of Octal NumbersTable 2.6
- - - - - - -

Octal Decimal Binary
0 0 000
1 1 001
2 2 010
3 3 011
4 4 100
5 5 101
6 6 110
7 7 111

10 8 001000
11 9 001001
12 10 001010
13 11 001011
14 12 001100
15 13 001101
16 14 001110
17 15 001111

Example 2.22

Convert (736)8 into an equivalent binary number.

Solution

From Table 2.6, we observe the binary equivalents of 7, 3 and 6 as 111, 011, and 110, respectively. Therefore,
(736)8 = (111 011 110)2.

2.7.4 Binary-to-Octal Conversion

Binary numbers can be converted into equivalent octal numbers by making groups of three bits starting from 
LSB and moving towards MSB for integer part of the number and then replacing each group of three bits 
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by its octal representation. For fractional part, the groupings of three bits are made starting from the binary 
point.

Example 2.23

Convert (1001110)2 to its octal equivalent.

Solution

(1001110)2 = (001 001 110)2
  = (1 1 6)8
  = (116)8

Example 2.24

Convert (0.10100110)2 to its equivalent octal number.

Solution

(0.10100110)2 = (0.101 001 100)2
 = (0.5 1 4)8
 = (0.514)8

Example 2.25

Convert the following binary numbers to octal numbers

(a) 11001110001.000101111001
(b) 1011011110.11001010011
(c) 111110001.10011001101

Solution

(a) 011 001 110 001.000 101 111 001 = (3161.0571)8
(b) 001 011 011 110.110 010 100 110 = (1336.6246)8
(c) 111 110 001.100 110 011 010 = (761.4632)8

From the above examples we observe that in forming the 3-bit groupings, 0’s may be required to complete 

fractional part.

2.7.5 Octal Arithmetic

Octal arithmetic rules are similar to the decimal or binary arithmetic. Normally, we are not interested in 
performing octal arithmetic operations using octal representation of numbers. This number system is normally 
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used to enter long strings of binary data into a digital system like a microcomputer. This makes the task of 
entering binary data in a microcomputer easier. Arithmetic operations can be performed by converting the 
octal numbers to binary numbers and then using the rules of binary arithmetic.

Multiplication and division can also be performed using the binary representation of octal numbers and 
then making use of multiplication and division rules of binary numbers.

2.7.6 Applications of Octal Number System

In digital systems, binary numbers are required to be entered and certain results or status signals are required 
to be displayed. It is highly inconvenient to handle long strings of binary numbers. It may cause errors also. 
Therefore, octal numbers are used for entering the binary data and displaying certain informations. Therefore, 
the knowledge of octal number system is very important for the effi cient use of microprocessors and other 
digital circuits. For example, the binary number 011111110 can easily be remembered as 376 and can be 

Example 2.27

Subtract (a) (37)8 from (53)8
 (b) (75)8 from (26)8

Solution

Using 8-bit representation,

Two’s complement of 11011001 = 00 100 111 = (47)8

(53)8

(26)8

(14)8

– (37)8

– (47)8

– (75)8

Discard carry

Two’s complement of (37)8

Two’s complement of (75)8

Two’s complement of result

00 0 0
0

0

0
0

000

000
0000

00000

000
1=

=

=

=
=

1 11
1

1

1
1

11111

111
11

11

111(+)
(a)

(b)
(+)

Example 2.26

Add (23)8 and (67)8.

Solution

23 = 010011
(+)67 = 110111
(112)8 = 1001 010

JAIN, R. P. (2009). Modern digital electronics. ProQuest Ebook Central <a onclick=window.open('http://ebookcentral.proquest.com','_blank')
         href='http://ebookcentral.proquest.com' target='_blank' style='cursor: pointer;'>http://ebookcentral.proquest.com</a>
Created from inflibnet-ebooks on 2021-09-23 07:45:15.

C
op

yr
ig

ht
 ©

 2
00

9.
 T

at
a 

M
cG

ra
w

-H
ill

. A
ll 

rig
ht

s 
re

se
rv

ed
.



Modern Digital Electronics48
- - - - - 

entered as 376 using keys. Since digital circuits can process only zeros and ones, the octal numbers have to be 
converted into binary form using special circuits known as octal-to-binary converters before being processed 
by the digital circuits.

2.8 HEXADECIMAL NUMBER SYSTEM

Hexadecimal number system is very popular in computer uses. The base for hexadecimal number system 
is 16 which requires 16 distinct symbols to represent the numbers. These are numerals 0 through 9 and 
alphabets A through F. Since numeric digits and alphabets both are used to represent the digits in the 
hexadecimal number system, therefore, this is an alphanumeric number system. Table 2.7 gives hexadecimal 
numbers with their binary equivalents for decimal numbers 0 through 15. From the table, it is observed that 
there are 16 combinations of 4-bit binary numbers and sets of 4-bit binary numbers can be entered in the 
computer in the form of hexadecimal (hex.) digits. These numbers are required to be converted into binary 
representation, using hexadecimal-to-binary converter circuits before these can be processed by the digital 
circuits.

Binary and Decimal Equivalents of Hexadecimal NumbersTable 2.7
- - - - - - -

Hexadecimal Decimal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

2.8.1 Hexadecimal-to-Decimal Conversion

Using Eq. (2.1), hexadecimal numbers can be converted to their equivalent decimal numbers.

JAIN, R. P. (2009). Modern digital electronics. ProQuest Ebook Central <a onclick=window.open('http://ebookcentral.proquest.com','_blank')
         href='http://ebookcentral.proquest.com' target='_blank' style='cursor: pointer;'>http://ebookcentral.proquest.com</a>
Created from inflibnet-ebooks on 2021-09-23 07:45:15.

C
op

yr
ig

ht
 ©

 2
00

9.
 T

at
a 

M
cG

ra
w

-H
ill

. A
ll 

rig
ht

s 
re

se
rv

ed
.



Number Systems and Codes 49
- - - - - 

Example 2.28 

Obtain decimal equivalent of hexadecimal number (3A.2F)16

Solution

Using Eq. (2.1),
(3A.2F)16 = 3 × 161 + 10 × 160 + 2 × 16 1 + 15 × 16 2

 = 48 + 10 + 16
2  + 

16
15

2

 = (58.1836)10

The fractional part may not be an exact equivalent and therefore, may give a small error.

2.8.2 Decimal-to-Hexadecimal Conversion

For conversion from decimal to hexadecimal, the procedure used in binary as well as octal systems is 
applicable, using 16 as the dividing (for integer part) and multiplying (for fractional part) factor.

Example 2.29

Convert the following decimal numbers into hexadecimal numbers.

(a) 95.5 (b) 675.625

Solution

(a) Integer part

Thus, (95)10 = (5F)16

Fractional part

Thus, (0.5)10 = (0.8)16
Therefore, (95.5)10 = (5F.8)16

5

5 15
50

95/16
5/16

RemainderQuotient

F

0.5

8

× 16
8.0
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2.8.3 Hexadecimal-to-Binary Conversion

Hexadecimal numbers can be converted into equivalent binary numbers by replacing each hex digit by its 
equivalent 4-bit binary number.

(b) Integer part

Thus, (675)10 = (2A3)16

Fractional part

Thus, (0.625)10 = (0.A)16
Therefore, (675.625)10 = (2A3.A)16

2 A 3

42 3
10
2

2
0

675/16
42/16
2/16

RemainderQuotient

0.625
× 16

10.000

A

Example 2.30

Convert (2F9A)16 to equivalent binary number.

Solution

Using Table 2.7, find the binary equivalent of each hex digit.

(2F9A)16 = (0010 1111 1001 1010)2
  = (0010111110011010)2

2.8.4 Binary-to-Hexadecimal Conversion

Binary numbers can be converted into the equivalent hexadecimal numbers by making groups of four bits 
starting from LSB and moving towards MSB for integer part and then replacing each group of four bits by 
its hexadecimal representation.
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From the above examples, we observe that in forming the 4-bit groupings 0’s may be required to complete 
the fi rst (most signifi cant digit) group in the integer part and the last (least signifi cant digit) group in the 
fractional part.

2.8.5 Conversion from Hex-to-Octal and Vice-Versa

Hexadecimal numbers can be converted to equivalent octal numbers and octal numbers can be converted 
to equivalent hex numbers by converting the hex/octal number to equivalent binary and then to octal/hex, 
respectively.

Example 2.31

Convert the following binary numbers to their equivalent hex numbers.

(a) 10100110101111
(b) 0.00011110101101

Solution

(10100110101111)2 =
92 A

(10100110101111)2 = (29AF)16

(0.00011110101101)2 =

41
(0.00011110101101)2 = (0.1EB4)16

F
1111101010010010

0.0001 1110 1011 0100
BE

(a)

(b)

Example 2.32 

Convert the binary numbers of Example 2.25 to hexadecimal numbers.

Solution

(a) 110 0111 0001.0001 0111 1001 = (671.179)16
(b) 10 1101 1110.1100 1010 011 = (2DE.CA6)16
(c) 1 1111 0001.1001 1001 101 = (1F1.99A)16

For the fractional part, the above procedure is repeated starting from the bit next to the binary point and 
moving towards the right.
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2.8.6 Hexadecimal Arithmetic

The rules for arithmetic operations with hexadecimal numbers are similar to the rules for decimal, octal, and 
binary systems. The information can be handled only in binary form in a digital circuit and it is easier to enter 
the information using hexadecimal number system. Since arithmetic operations are performed by the digital 
circuits on binary numbers, therefore hexadecimal numbers are to be fi rst converted into binary numbers. 
Arithmetic operations will become clear from the following examples.

Example 2.33 

Convert the following hex numbers to octal numbers.

(a) A72E (b) 0.BF85

Solution

= (1010 0111 0010 1110)2

=

= (123456)8

= (0.1011 1111 1000 0101)2

= 

= (0.577024)8

(a)

(b)

(A72E)16

001 010 011 100 101 110

(0.BF85)16

111 111 000 010 1000.101

Example 2.34

Convert (247.36)8 to equivalent hex number.

Solution

= (0 )21010 0111 0111 1000

= (A7.78)16

·

Example 2.35

Add (7F)16 and (BA)16

Solution

(139)16 = 100111001
10111010
011111117F =

(+) BA =

(247.36)8 = (010 100 111.011 110)2
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Multiplication and division can also be performed using the binary representation of hexadecimal numbers 
and then making use of multiplication and division rules of binary numbers.

2.9 CODES

Computers and other digital circuits process data in the binary format. Various binary codes are used to 
represent data which may be numeric, alphabets or special characters. Although, in every code used the 
information is represented in binary form, the interpretation of this binary information is possible only if the 
code in which this information is available is known. For example, the binary number 1000001 represents 65 
(decimal) in straight binary, 41 (decimal) in BCD and alphabet A in ASCII code. A user must be very careful 
about the code being used while interpreting information available in the binary format. Codes are also used 
for error detection and error correction in digital systems.

Some of the commonly used codes are given below.

2.9.1 Straight Binary Code

This is used to represent numbers using natural (or straight) binary form as discussed in Section 2.3. Various 
arithmetic operations can be performed in this form. Binary codes for decimal numbers 0 to 15 are given in 
Table 2.8. It is a weighted code since a weight is assigned to every position.

2.9.2 Natural BCD Code

In this code, decimal digits 0 through 9 are represented (coded) by their natural binary equivalents using four 
bits and each decimal digit of a decimal number is represented by this four bit code individually. For example, 
(23)10 is represented by 0010 0011 using BCD code, rather than (10111)2. From this it is observed that it 
requires more number of bits to code a decimal number using BCD code than using the straight binary code. 
However, inspite of this disadvantage it is very convenient and useful code for input and output operations 
in digital systems.

This code is also known as 8-4-2-1 code or simply BCD code. 8, 4, 2, and 1 are the weights of the four 
bits of the binary code of each decimal digit similar to straight binary number system. Therefore, this is 

Example 2.36

Subtract (a) (5C)16 from (3F)16
 (b) (7A)16 from (C0)16

Solution

Two’s complement of 11100011 = 0001 1101 = (1D)16

Two’s complement of (5C)16

Two’s complement of result11100011
(+)10100100

001111113F =(a)
–5C =
–1D =

(b)

Discard carry

C0 =

101000110

11000000

46 =
–7A = (+) 10000110 Two’s complement of (7A)16
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a weighted code and arithmetic operations can be performed using this code, which will be discussed in 
Chapter 6. BCD codes for decimal digits 0 through 9 are given in Table 2.8.

Various Binary CodesTable 2.8
- - - - - - -

Decimal
Number

Binary BCD Excess-3 Gray
B3 B2 B1 B0 D  C  B  A E3 E2 E1 E0 G3 G2 G1 G0

0  0  0  0  0   0   0   0  0  0  0  1  1  0  0  0  0
1  0  0  0  1   0   0   0  1  0  1  0  0  0  0  0  1
2  0  0  1  0   0   0   1  0  0  1  0  1  0  0  1  1
3  0  0  1  1   0   0   1  1  0  1  1  0  0  0  1  0
4  0  1  0  0   0   1   0  0  0  1  1  1  0  1  1  0
5  0  1  0  1   0   1   0  1  1  0  0  0  0  1  1  1
6  0  1  1  0   0   1   1  0  1  0  0  1  0  1  0  1
7  0  1  1  1   0   1   1  1  1  0  1  0  0  1  0  0
8  1  0  0  0   1   0   0  0  1  0  1  1  1  1  0  0
9  1  0  0  1   1   0   0  1  1  1  0  0  1  1  0  1

10  1  0  1  0  1  1  1  1
11  1  0  1  1  1  1  1  0
12  1  1  0  0  1  0  1  0
13  1  1  0  1  1  0  1  1
14  1  1  1  0  1  0  0  1
15  1  1  1  1  1  0  0  0

2.9.3 Excess-3 Code

This is another form of BCD code, in which each decimal digit is coded into a 4-bit binary code. The 
code for each decimal digit is obtained by adding decimal 3 to the natural BCD code of the digit. For 
example, decimal 2 is coded as 0010 + 0011 = 0101 in Excess-3 code. It is not a weighted code. This code 
is a self-complementing code, which means 1’s complement of the coded number yields 9’s complement of 
the number itself. For example, Excess-3 code of decimal 2 is 0101, its 1’s complement is 1010 which is 
Excess-3 code for decimal 7, which is 9’s complement of 2. The self complementing property of this code 
helps considerably in performing subtraction operation in digital systems. Excess-3 codes for decimal digits 
0 through 9 are given in Table 2.8.

2.9.4 Gray code

It is a very useful code in which a decimal number is represented in binary form in such a way so that each 
Gray-code number differs from the preceding and the succeeding number by a single bit. For example, the 
Gray code for decimal number 5 is 0111 and for 6 is 0101. These two codes differ by only one bit position 
(third from the left). This code is used extensively for shaft encoders because of this property. It is not a 
weighted code. The Gray code is a refl ected code and can be constructed using this property as given below.
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 (i) A 1-bit Gray code has two code words 0 and 1 representing decimal numbers 0 and 1 respectively
 (ii) An n-bit (n  2) Gray code will have fi rst 2n 1 Gray codes of (n  1)-bits written in order with a leading 

0 appended.
(iii) The last 2n 1 Gray codes will be equal to the Gray code words of an (n  1)- bit Gray code, written in 

reverse order (assuming a mirror placed between fi rst 2n 1 and last 2n 1 Gray codes) with a leading 1 
appended.

Example 2.37

Determine (a) 1-bit (b) 2-bit (c) 3-bit Gray codes and tabulate along with their equivalent decimal numbers.

Solution

(a) 1-bit Gray code is constructed using (i) above.

 Decimal number Gray code
 0 0
 1 1

(b) 2-bit Gray code is constructed using (ii) and (iii) above and Gray code of 1-bit

 Decimal number Gray code
 0 0 0
 1 0 1
 2 1 1
 3 1 0

(c) 3-bit Gray code is constructed using 2-bit Gray code.

 Decimal number Gray code
 0 0 0 0
 1 0 0 1
 2 0 1 1
 3 0 1 0
 4 1 1 0
 5 1 1 1
 6 1 0 1
 7 1 0 0

4-bit Gray code is given in Table 2.8.

2.9.5 Octal Code

It is a 3-bit binary code, in which each of the octal digits 0 through 7 is coded into 3-bit straight binary 
number. For example, code for octal digit 4 is 100. Using this code, octal numbers can be coded into straight 
binary form or the binary numbers can be represented by octal numbers as discussed in Section 2.7.

This code is used for binary inputs in digital computers, microprocessors, etc.
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2.9.6 Hexadecimal Code

It is a 4-bit binary code (Section 2.8) used for input/output in digital computers, microprocessors, etc.

Example 2.38 

Represent the decimal number 27 in binary form using

 (i) Binary Code (iv) Gray code
 (ii) BCD code (v) Octal code
(iii) Excess-3 code (vi) Hexadecimal code

Solution

  (i) The decimal number is converted into straight binary form. Its value is 11011
 (ii) Each digit of the decimal number is coded using 4-bit BCD code as given below

0010 0111

(iii) Each digit of the decimal number is coded using 4-bit Excess-3 code as given below

0101 1010

(iv) 5 bits are required to represent 27, therefore, 5-bit Gray code is constructed and 27 is represented as 10110.
 (v) (27)10 = (33)8 = 011 011
(vi) (27)10 = (1B)16 = 0001 1011

Example 2.39

Represent the decimal numbers (a) 396 and (b) 4096 in binary form in

 (i) Binary code (straight binary) (iv) Octal code
 (ii) BCD code (v) Hex code
(iii) Excess-3 code

Solution

(a) (i) 396 = 110001100
   (ii) 396 = 001110010110
  (iii) 396 = 011011001001
  (iv) 396 = (614)8 = 110001100
   (v) 396 = (18C)16 = 000110001100

(b) (i) 4096 = 1000000000000
   (ii) 4096 = 0100000010010110
  (iii) 4096 = 01110011 11001001
  (iv) 4096 = (10000)8 = 001 000 000 000 000
    (v) 4096 = (1000)16 = 0001 0000 0000 0000
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2.9.7 Alphanumeric Codes

In many situations, digital systems are required to handle data that may consist of numerals, letters, and 
special symbols. For example, an university with thousands of students may use a digital computer to 
process the examination results. In this the names of the students, subjects, etc. are to be represented in the 
binary form. Therefore, it is necessary to have a binary code for alphabets also. If we use an n-bit  binary 
code, we can represent 2n elements using this code. Therefore, to represent 10 digits 0 through 9 and 26 
alphabets A through Z, we need a minimum of 6 bits (26 = 64, but 25 = 32 is not suffi cient). One possible 6-bit 
alphanumeric code is given in Table 2.9. It is used in many computers to represent alphanumeric characters 
and symbols internally and therefore can be called internal code. Frequently, there is a need to represent 
more than 64 characters including the lower case letters and special control characters for the transmission of 
digital information. For this reason the following two codes are normally used:

Extended BCD Interchange Code (EBCDIC)1. 
American Standard Code for Information Interchange (ASCII)2. 

These are given in Tables 2.9 and 2.10 respectively.

Some Alphanumeric CodesTable 2.9
- - - - - - -

6-bit
Internal code 

8-bit
EBCDIC codeCharacter

A 010001 11000001
B 010010 11000010
C 010011 11000011
D 010100 11000100
E 010101 11000101
F 010110 11000110
G  010111 11000111
H 011000 11001000
I 011001 11001001
J 100001 11010001
K 100010 11010010
L 100011 11010011
M 100100 11010100
N 100101 11010101
O 100110 11010110
P 100111 11010111
Q 101000 11011000
R 101001 11011001

(Continued)
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6-bit
Internal code 

8-bit
EBCDIC codeCharacter

S 110010 11100010
T 110011 11100011
U 110100 11100100
V 110101 11100101
W 110110 11100110
X 110111 11100111
Y 111000 11101000
Z 111001 11101001
0 000000 11110000
1 000001 11110001
2 000010 11110010
3 000011 11110011
4 000100 11110100
5 000101 11110101
6 000110 11110110
7 000111 11110111
8 001000 11111000
9 001001 11111001

blank 110000 01000000
. 011011 01001011
( 111100 01001101
+ 010000 01001110
$ 101011 01011011
* 101100 01011100
) 011100 01011101

— 100000 01100000
/ 110001 01100001
, 111011 01101011
= 001011 01111110

Table 2.9
- - - - - - -

(Continued)
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The code is read from this table as:

b6 b5 b4 b3 b2 b1 b0

H = 1 0 0 1 0 0 0 = (48)16

 n = 1 1 0 1 1 1 0 = (6E)16

The ASCII CodeTable 2.10
- - - - - - -

b6 0 0 0 0 1 1 1 1
b5 0 0 1 1 0 0 1 1

b4 0 1 0 1 0 1 0 1
b3 b2 b1 b0 0 1 2 3 4 5 6 7
0 0 0 0 0 NUL DLE SP 0 @ P p
0 0 0 1 1 SOH DC1 ! 1 A Q a q
0 0 1 0 2 STX DC2 2 B R b r
0 0 1 1 3 ETX DC3  # 3 C S c s
0 1 0 0 4 EOT DC4 $ 4 D T d t
0 1 0 1 5 ENQ NAK % 5 E U e u
0 1 1 0 6 ACK SYN & 6 F V f v
0 1 1 1 7 BEL ETB ’ 7 G W g w
1 0 0 0 8 BS CAN ( 8 H X h x
1 0 0 1 9 HT EM ) 9 I Y i y
1 0 1 0 A LF SUB * : J Z j z
1 0 1 1 B VT ESC + ; K [ k {
1 1 0 0 C FF FS , < L \ 1 |
1 1 0 1 D CR GS – = M ] m }
1 1 1 0 E SO RS . > N ^ n ˜
1 1 1 1 F SI US / ? O – o DEL

Example 2.40

Encode the following in ASCII Code:

(a) My dear Rajendra,
(b) I am 20 years old.

Solution

Each of the alphabet, numeral, and the special character is represented by 7-bit ASCII code given in Table 2.10.
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The code for SPACE has not been added above, which is 0100000

I

(b) 1001001

2

.

M y

y

d e

e

e

a r

1010010 1100001 1101010 1100101 1101110 1100100

R a

a

a r

,r

s

j

ma

l do

n d

1110010 1100001 0101100

11011011100001 01100000110010

0

111001111100101100001

1101111 1101100 1100100 0101110

11001011111001

.

1001101 1111001 1100100 1100101 1100001 1110010(a)

2.10 ERROR DETECTING AND CORRECTING CODES

Digital signals are processed for performing various operations and are transmitted from one circuit or system 
to another circuit or system. When these binary signals are transmitted from one location (transmitter) to 
another location (receiver), transmission errors may occur because of electrical noise in the transmission 
channel. Due to transmission error a signal transmitted as a 0 may be received as a 1 or vice-versa. In 
complex digital systems, millions of bits per second are manipulated and it is desired to have high data 
integrity, or at least a violation of data integrity must be detectable.

probability of occurrence of an error in a single bit position. The probability of occurrence of error in two or 
more bit positions simultaneously is substantially smaller. It is desired to detect the error in the received data 
word, locate its bit position and correct it. Various codes are used for the detection and correction of error. Since 
the probability of simultaneous occurrence of error in two or more bit positions is negligibly small, therefore, 
we restrict our discussion to the detection and correction of single error, i.e. error in one bit position.

2.10.1 Error-detecting Codes

When a digital information is transmitted, it may not be received correctly by the receiver. At the receiving 
end it may or may not be possible to detect whether the information has been received correctly or not. Let 
us consider BCD code given in Table 2.8 is transmitted and the code corresponding to decimal 9, i.e. 1001 
is transmitted and is received as 1011. Since 1011 is an invalid BCD code, therefore, it may be detected by 
the receiver. On the other hand if it is received as 0001 which is a valid BCD code for decimal 1, the receiver 
will intrepret it as decimal 1 and the error is not detected. In general, the erroneous word received may or 
may not be a valid code.

To ensure that the occurrence of a single error always results in an invalid code, so as to avoid its 
incorrect interpretation by the receiver, the code must possess the property that the occurrence of any single 
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error transforms a valid code word into an invalid code word. Since for an n-bit code there are 2n possible 
combinations, therefore, if it is desired to make this code an error-detecting code, only half of the possible 
2n combinations should be included to form the code. This means, if an extra bit is attached to the n-bit 
code word to make the number of bits n + 1 in such a way so as to make the number of ones in the resulting
(n + 1)-bit code even or odd, it will certainly be an error-detecting code.

The criterion of minimum distance of a code can also be used as a useful property of an error-detecting 
code. The minimum distance of a code is the smallest number of bits in which any two code words differ. A 
code is an error-detecting code if and only if its minimum distance is two or more.

For detection of error an extra bit known as parity bit is attached to each code word to make the number 
of ones in the code even (even parity) or odd (odd parity).

Table 2.11 shows BCD code with parity bit attached making it even parity code or odd parity code.

BCD Code with Parity BitTable 2.11
- - - - - - -

BCD code BCD code with even parity BCD code with odd parity
D  C  B  A P  D  C  B  A P  D  C  B  A

0   0   0  0 0   0   0  0   0 1   0   0  0   0
0   0   0  1 1   0   0  0   1 0   0   0  0   1
0   0   1  0 1   0   0  1   0 0   0   0  1   0
0   0   1  1 0   0   0  1   1 1   0   0  1   1
0   1   0  0 1   0   1  0   0 0   0   1  0   0
0   1   0  1 0   0   1  0   1 1   0   1  0   1
0   1   1  0 0   0   1  1   0 1   0   1  1   0
0   1   1  1 1   0   1  1   1 0   0   1  1   1
1   0   0  0 1   1   0  0   0 0   1   0  0   0
1   0   0  1 0   1   0  0   1 1   1   0  0   1

From Table 2.11 we observe that a parity bit (P) 0 or 1 is attached to every code word so as to make the 
number of ones even or odd for even and odd parity respectively. It can be easily verifi ed that the minimum 
distance between any two code words with parity bit attached is two. The parity bit 1 or 0 is attached to the 
code to be transmitted at the transmitter end and the parity of the received (n + 1)- bit word is checked at the 
receiving end. If there is only one error, the erroneous code is detected at the receiving end by parity check. If 
odd number of bits are transmitted erroneously, then also the parity check will detect the incorrect code but if 
there are even number of bits received incorrectly, this method will not detect error. The parity check method 
can only detect error in the transmitted word at the receiving end. It can not locate the bit which has changed 
and, therefore, the question of correction does not arise.

The parity generator and parity checker circuits have been discussed in Chapter 6.

Example 2.41

Formulate 8-bit ASCII code for Example 2.40 and represent it in hexadecimal code with

 (i) even parity
(ii) odd parity
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Solution

 (i) For Example 2.40(a):
The 7-bit ASCII code for M is 1001101, It contains four ones. To make an 8-bit even parity code corresponding 
to this, one 0 is attached to it as the most-significant bit. Therefore, the 8-bit code will be 01001101. Its 
hexadecimal representation is 4D. Similarly ASCII code for y is 1111001, which contains five 1s and therefore, 
a 1 as MSB is attached to it for obtaining its 8-bit even parity code, i.e. 11111001. Its hex representation is F9.

In the same way each character is formulated. The complete sentence (including the spaces) in hexadecimal 
code is

4DF9A0E465E172A0D2E16A65EEE472E1AC

For Example 2.40 (b):
Using the above procedure, we get,

C9A0E1EDA0B230A0F965E172F3A06F6CE42E

(ii) For Example 2.40(a):
The 7-bit ASCII code for M is 1001101, when a 1 is attached to this as MSB, it becomes the 8-bit code for M. 
In hexadecimal code it is CD. Similarly, a 0 is attached as MSB to the 7-bit ASCII code of y to make it 8-bit 
with odd parity. In the same way each character is formulated. The complete sentence (including the spaces) in 
hexadecimal code is

CD792064E561F2205261EAE56E64F2612C

For Example 2.40 (b):
Using the above procedure, we get,

4920616D2032B02079E561F27320EFEC64AE

Example 2.42

Find out the minimum distance of

(a) ASCII code.
(b) 8-bit ASCII code with even parity.
(c) 8-bit ASCII code with odd parity.

Solution

From the Table 2.10, examine the ASCII codes of various alphabets, numerals, special characters, etc. and find out 
the distance between any two code words. For example, ASCII code for alphabet a is 1100001 and for alphabet c 
is 1100011. These two code words differ in only one bit position (b1), which shows that the minimum distance of 
ASCII code is 1.
(b) ASCII code with even parity for

a is 11100001 and for
c is 01100011
These two code words differ in two bit positions (b1 and b7). Similarly, it can be verified for any two code words 
that the distance is 2 or more. Therefore, the minimum distance of ASCII code with even parity is two.

(c) Similar to part—(b) it can be verified that the minimum distance of 8-bit ASCII code with odd parity is two.
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2.10.2 Error-correcting Codes

As discussed above, by adding a single parity bit alongwith the information, or message being transmitted, an 
error in single bit position can be detected. The parity check gives only information that the received message is 
incorrect. It can not locate the bit position in which error has occurred and, therefore, can not correct the error.

Let us consider a 4-bit binary word 0101 is transmitted alongwith an even parity bit. Due to transmission 
error in one bit position, the erroneous word received may be 00100, 00111, 00001, or 01101 depending on 
the error in bit position b0, b1, b2, and b3 respectively.

Let us examine whether these erroneous words are possible with any other message being transmitted. 
If the word 01100 is transmitted, it results in 00100 at the receiving end due to an error in bit position b3. 
Similarly, the other erroneous words are received due to the transmission error in some other words being 
transmitted. This indicates that a minimum distance of two can not locate the bit position in the incorrectly 
received word. Therefore, for a code to be error correcting, its minimum distance must be more than two.

If the minimum distance is three, every error in single bit results in an invalid code word which is at 
a distance of one from the original code word and at a distance of two from any other valid code word. 
Therefore, a single bit error can be detected and located using this code. Once the error bit is located it can be 
inverted to correct the erroneously received message.

In general, a code is said to be error-correcting code if the correct code word can be deduced from the erroneous 
word. The capability of a code to be error detecting and/or error-correcting can be determined from its minimum 
distance. If a code’s minimum distance is 2c + d + 1, it can correct errors in upto c bits and detect errors in upto d 
additional bits. Table 2.12 gives possible values of c and d for various values of minimum distance of a code.

Table 2.12
- - - - - - -

Minimum distance of a code c d
1 0 0
2 0 1
3 0 2

1 0
4 0 3

1 1

From Table 2.12, we observe that if the minimum distance of a code is 4, it can correct upto one bit
(c = 1) and detect errors in upto two (c + d = 1 + 1) bits. The same code can also be used for detecting errors 
in upto 3 bits but correct no errors (c = 0).

Example 2.43
Four messages are encoded in the following code words:

Message       Code
 M1       01101
 M2       10011
 M3       00110
 M4       11000

Determine the minimum distance of this code.
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Solution

To determine the minimum distance, we find out the number of locations in which any code word differs from any 
other code word. These are given below:

Distance between the codes

M1 and M2 4
M1 and M3 3
M1 and M4 3
M2 and M3 3
M2 and M4 3
M3 and M4 4

Therefore, the minimum distance of this code is three.

Example 2.44

Consider the following four codes:

Code A Code B Code C Code D
0001 000 01011 000000
0010 001 01100 001111
0100 011 10010 110011
1000 010 10101

110
111
101
100

Which of the following properties is satisfi ed by each of the above codes?

(a) Detects single error
(b) Detects double errors
(c) Detects triple errors
(d) Corrects single error
(e) Corrects double errors
(f) Corrects single error and detects double errors

Solution

(a) Code A has a minimum distance of 2
(b) The minimum distance of code C is 3, therefore, it can detect double errors.
(c) Code D has a minimum distance of 4, therefore, it can detect triple errors.
(d) Code C and code D
(e) None
(f) Code D
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Hamming Code Hamming code is an error-correcting code. It is constructed by adding a number of 
parity bits to each group of n-bit information, or message in such a way so as to be able to locate the bit 
position in which error occurs. Let us assume that k parity bits p1, p2 . . ., pk are added to the n-bit message to 
form an (n + k)-bit code. The value of k must be chosen in such a way so as to be able to describe the location 
of any of the n + k possible error bit locations and also ‘no error’ condition. Consequently, k must satisfy the 
inequality

 2k  n + k + 1. (2.2)

The location of each of the n + k bits within a code word is assigned a decimal number, starting from 1 
to the MSB and n + k to the LSB. k parity checks are performed on selected bits of each code word. Each 
parity check includes one of the parity bits. The result of each parity check is recorded as 1 if error has 
been detected and as 0 if no error has been detected. Let the results of the parity checks involving the 
parity bits pk, pk 1, . . . are c1, c2, . . . respectively. Bit c1 is 1 if an error is detected and 0 if there is no error. 
Similarly c2, c3, . . ., etc. The decimal value of the binary word formed c1, c2 . . ., ck gives the decimal 
value assigned to the location of the erroneous bit. If there is no error, then the decimal value will be 0. 
This decimal number is the position or location number. The parity bits p1, p2, . . . are placed in locations 
1, 2, 4, . . ., 2k 1.

Example 2.45

Find out the value of k for converting BCD code into Hamming code and the bit positions of the resulting Hamming 
code.

Solution

The value of k must be chosen to satisfy the eqn. (2.2) since n = 4, therefore,

2k  k + 5

The minimum value of k for which it is satisfied is 3. Therefore, three parity bits are attached to each of the BCD 
code for constructing the Hamming code. It will be a 7-bit code with bit positions

p1  p2  n1  p3  n2  n3  n4
1    2   3   4   5   6   7

Values (0 or 1) are assigned to the parity bits so as to make the Hamming code have either even parity or 
odd parity and when an error occurs, the position number will take on the value assigned to the location of 
the erroneous bit.

In the case of BCD code with three parity bits there are seven error positions. Table 2.13 gives these error 
positions and the corresponding values of the position number.
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Table 2.13
- - - - - - -

Position number
Error position c1  c2  c3

0 (no error) 0   0   0
1 0   0   1
2 0   1   0
3 0   1   1
4 1   0   0
5 1   0   1
6 1   1   0
7 1   1   1

From Table 2.13 we observe, that if an error occurs in positions

1, 3, 5, 7 then c3 = 1
2, 3, 6, 7 then c2 = 1
4, 5, 6, 7 then c1 = 1

Therefore, p1 is selected so as to establish even (or odd) parity in positions 1, 3, 5, 7
p2 is selected so as to establish even (or odd) parity in positions 2, 3, 6, 7
p3 is selected so as to establish even (or odd) parity in positions 4, 5, 6, 7

Example 2.46

Construct Hamming code for BCD 0110. Use even parity.

Solution

For 4-bit code three parity bits p1, p2, and p3 are appended in locations 1, 2, and 4 respectively as shown below:

Position 1 2 3 4 5 6 7
 p1 p2 n1 p3 n2 n3 n4
Original BCD 0 1  1  0
Even parity in positions

1, 3, 5, 7 requires p1 = 1 1 0 1 1  0
Even parity in positions

2, 3, 6, 7 requires p2 = 1 1 1 0 1 1 0
Even parity in positions

4, 5, 6, 7 requires p3 = 0 1 1 0 0 1 1 0

Therefore, Hamming code for BCD digit 0110 with even parity is 1100110.
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Example 2.47

If the Hamming code sequence 1100110 is transmitted and due to error in one position, is received as 1110110, 
locate the position of the error bit using parity checks and give the method for obtaining the correct sequence.

Solution

Parity check on 4, 5, 6, 7 (0110) positions gives c1 = 0 (even parity)
Parity check on 2, 3, 6, 7 (1110) positions gives c2 = 1 (odd parity)
Parity check on 1, 3, 5, 7 (1110) positions gives c3 = 1 (odd parity)

Therefore, the position number formed is c1 c2 c3 = 011, which means that the location of the error is in position 3.
To correct the error the bit received in location 3 is complemented and the correct message 1100110 is received.

Example 2.48

(a) Find the distance between the BCD digits 0110 and 0111.
(b) Determine Hamming codes for 0110 and 0111 and fi nd the distance between them. Use even parity.

Solution

(a) The distance between the BCD numbers 0110 and 0111 is 1 since only the LSB is different.
(b) The Hamming codes for these are given below

These Hamming codes differ in positions 1, 2, 4, and 7, thus the distance between them is four.

Hamming code
BCD code

0
0 0 0 0 0

0 0 0
1 1
1 1 1

1
1

1 1 1
1 1 1 1

D C B A 2 3 4 5 6 7

p1 p2 p3n1 n2 n3 n4

Example 2.49

Some 8–4–2–1 code words are transmitted in Hamming code with even parity checking. The following words are 
received.

(a) 0101000 (e) 1110011
(b) 0011101 (f) 1111001
(c) 1100100 (g) 1101001
(d) 1100110 (h) 1000010

  (i) Find out the correctly received words, if any.
 (ii) Determine the words that have single error and specify the correct decimal digit.
(iii) Find out the words received with double error, if any.
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Solution

(a) 0101000

Parity check in positions 4, 5, 6, 7  1000  odd c1 = 1
Parity check in positions 2, 3, 6, 7  1000  odd c2 = 1
Parity check in positions 1, 3, 5, 7  0000  even c3 = 0

The error position is c1 c2 c3 = 110 = (6)10.
Therefore, the correct message is 0101010 which is decimal 2.

(b) By performing the parity checks, we obtain c1 c2 c3 = 101 = 5
Therefore, the correct message is 0011001 which corresponds to decimal 9.

(c) Here, c1 c2 c3 = 110 = 6.
Therefore, the correct message is 1100110 which corresponds to decimal 6.

(d) Here, c1 c2 c3 = 000 which means there is no error. This code corresponds to decimal 6.
(e) The parity checks give c1 c2 c3 = 001 = (1)10, which means the correct message is 0110011. This corresponds to 

4-bit message 1011 which is not a valid BCD digit. This shows that there is one more error in this, which can 
not be corrected i.e. its location can not be determined.

(f) Here, c1 c2 c3 = 011 = (3)10.
The correct message is 1101001 which corresponds to BCD 1.

(g) Here, c1 c2 c3=000, which means there is no error. The BCD word is 1.
(h) The parity checks give c1 c2 c3 = 111 = (7)10. The correct message is 1000011 corresponding to BCD 3.

Example 2.50
For ASCII code 

(a) determine the number of parity bits which must be appended to the code to make it an error-correcting code i.e. 
Hamming code. 

(b) determine the locations of the parity bits.

Solution

(a) Since n = 7, therefore using Eq. (2.2), we obtain

2k 7 + k + 1

where, k is the number of parity bits to be attached. Thus gives k = 4.
(b) To determine the locations in which the parity bits are to be attached, we construct Table 2.14 which gives the 

error positions and the corresponding values of the position numbers.
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From Table 2.14 we observe, that if an error occurs in positions

1, 3, 5, 7, 9, 11 then c4 = 1
2, 3, 6, 7, 10, 11 then c3 = 1
4, 5, 6, 7 then c2 = 1
8, 9, 10, 11 then c1 = 1

Therefore,

p1 is selected so as to establish even parity in positions   1, 3, 5, 7, 9, 11
p2 is selected so as to establish even parity in positions   2, 3, 6, 7, 10, 11
p3 is selected so as to establish even parity in positions   4, 5, 6, 7
p4 is selected so as to establish even parity in positions   8, 9, 10, 11

Since one parity bit must be involved in each value of c, therefore, we observe that the parity bits must be located 
in positions 1, 2, 4 and 8.

Thus the Hamming code will be 

p1 p2 n1 p3 n2 n3 n4 p4 n5 n6 n7

1 2 3 4 5 6 7 8 9 10 11

Table 2.14
- - - - - - -

Position number
Error position c1   c2   c3   c4

0 0    0     0    0
1 0    0     0    1
2 0    0     1    0
3 0    0     1    1
4 0    1     0    0
5 0    1     0    1
6 0    1     1    0
7 0    1     1    1
8 1    0     0    0
9 1    0     0    1

10 1    0     1    0
11 1    0     1    1

SUMMARY

Various number systems that are widely used in digital circuits, microprocessors, computers, etc. have 
been presented. The rules of arithmetic operations like addition, subtraction, multiplication, division, etc. 
are given.
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GLOSSARY

Alphanumeric codes Codes that represent numerals, alphabets (letters) and other usual symbols, for 
example, ASCII code.
ASCII Code (American Standard Code for Information Interchange)  A 7-bit code widely used in 
computers and related areas for representation of alphanumeric characters and special symbols.
Base (or Radix) of a number system The number of distinct symbols (digits) used in a number system.
BCD (Binary-coded decimal) A code for representing decimal numbers is which each decimal digit is 
represented by its 4-bit binary code. See also Natural BCD.
Byte A group of eight bits.
Code A system of representation of numeric, alphabets or special characters in a binary form for processing 
and transmission using digital techniques.
Complement Inversion of the value of a binary number, variable, or expression.
Complementation The process of determining complement of a binary number, variable, or expression.
Decimal number system A number system with base (or radix) 10. The ten digits used to represent any 
number are: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.
Encoding The process of coding alphabets, numerals and symbols in binary format.
Even parity A digital word (string of 0s and 1s) having an even number of ones.
Error correcting code A code used for correction of error in the transmission of digital signals.
Error detecting code A code used for detection of error in the transmission of digital signals.
Excess-3 code A BCD code formed by adding 3(0011) to the binary equivalent of the decimal number.
Gray code A code in which only one bit changes between successive numbers.
Hamming code An error correcting code.
HEX Abbreviation for hexadecimal.
Hexadecimal code A method of representing binary numbers in which each group of 4 bits (starting from 
the right most bit) is represented by its hex digit.
Hexadecimal number system A number system that uses digits 0 through 9 and the alphabets A through F. 
Its base (or radix) is 16.

Different codes are in use in digital systems for representing numerals, alphabets and special symbols 
and some of the more commonly used codes have been introduced. The ASCII is the most commonly 
used code in computers. Any programme and data are entered into the memory of the computer using 
key-board. When any key is pressed, its ASCII code is generated which gets stored in the memory.

The knowledge of these number systems and codes is very essential for the effective understanding 
of various digital systems including microprocessors.

When digital data is transmitted from one location to another location error may occur in transmission 
due to the presence of electrical noise. To detect and correct the error, error-detection and error-correction 
codes are used. These codes are based on the principle of parity checking. The concepts of error-
detection, error-correction together with the codes used have been discussed.
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The right-most bit of a binary number. It has the least weight.
The right most digit of a number.

The left-most bit of a binary number.
The left-most digit of a number.

BCD representation that uses natural binary numbers.
A group of four bits.

 Nine’s complement of an N-digit-decimal number is the number obtained by subtracting 
it from an N-digit number consisting of all 9’s.

A code in which each group of three bits starting from LSB is represented by its equivalent 
octal digit.

A number system with base (or radix) 8 that uses digits 0, 1, 2, 3, 4, 5, 6, and 7.
A digital word having an odd number of ones.

The number obtained by complementing each bit of a binary number.
A binary representation used for representing positive as well as negative 

numbers (signed numbers).
A term used to specify the number of ones in a digital word as odd or even.

An extra bit attached to a binary word to make the parity of the resultant word even or odd.
A logic circuit that checks the parity of a binary word.

A logic circuit that generates an additional bit which when appended to a digital word 
makes its parity as desired (odd or even).

A number system in which value of a digit depends upon its position in the 
number.

Same as the base.
The MSB of a signed binary number. If 0, the number is positive, when it is 1, the number is 

negative.
A binary number that is either positive or negative.

A representation system for signed binary numbers in which the MSB 
represents the sign and the remaining bits represent the magnitude of the number.

Binary number obtained by adding one to the one’s complement of a binary number.
A method of representation of binary number in which negative numbers 

are represented by two’s complement of their positive equivalents.
A binary code in which weight is assigned to each position in the number.

A group of bits.

REVIEW QUESTIONS

 2.1 The radix of a binary number system is______________and the digits used are ______________.
 2.2 In______________number system, 16 distinct symbols are used to specify any number.
 2.3 A byte contains______________bits.
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 2.4 The weights assigned in an 8-bit binary number to LSB and MSB are ______________
and______________respectively.

 2.5 The MSB of a signed-binary number indicates its______________.
 2.6 2’s complement of a 2’s complement is______________.
 2.7 The number of bits required to represent 25 in BCD is______________.
 2.8 The Excess-3 code for decimal number 8 is______________.
 2.9 The number of bits in ASCII code is______________.
2.10 The number of characters represented by ASCII code is______________.
2.11 The parity of 01110010 is______________.
2.12 The minimum distance required for a code to be error detecting code is______________.
2.13 A minimum distance of______________is required for a code to be error correcting code.
2.14 The process of subtraction gets converted into that of addition by using ______________.
2.15 Gray code is a______________. (weighted/non-weighted)
2.16 The distance between the code words 10010 and 10101 is______________.
2.17 A single parity bit attached to 8421 code makes its minimum distance______________.
2.18 A minimum of ________ parity bits are required for generating Hamming code for 8421 code.
2.19 The number of parity bits required for generating Hamming code for ASCII code is _____________.
2.20 In 7-bit Hamming code for BCD, the parity bits are at ______________ locations.
2.21 The minimum distance of ASCII code changes from ______________ to ______________ in its 

Hamming code.

PROBLEMS

 2.1 Determine the decimal numbers represented by the following binary numbers:

(a) 111001 (c) 11111110 (e) 1101.0011 (g) 0.11100
(b) 101001 (d) 1100100 (f) 1010.1010

 2.2 Determine the binary numbers represented by the following decimal numbers:

(a) 37 (c) 15 (e) 11.75
(b) 255 (d) 26.25 (f) 0.1

 2.3 Add the following groups of binary numbers:

(a)  (b) 

 2.4 Perform the following subtractions using 2’s complement method:

 2.5 Convert the following numbers from decimal to octal and then to binary. Compare the binary numbers 
obtained with the binary numbers obtained directly from the decimal numbers.

(a) 375 (b) 249 (c) 27.125

 2.6 Convert the following binary numbers to octal and then to decimal. Compare the decimal numbers 
obtained with the decimal numbers obtained directly from the binary numbers.

(a) 11011100.101010 (b) 01010011.010101 (c) 10110011

   1011
+ 1101

   1010.1101
     + 10 1.01
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 2.7 Convert the decimal numbers in Problem 2.5 to hexadecimal and then to binary. Compare the binary 
numbers obtained with the binary numbers obtained directly from the decimal numbers.

 2.8 Convert the binary numbers in Problem 2.6 to hexadecimal and then to decimal. Compare the decimal 
numbers obtained with the decimal numbers obtained directly from the binary numbers.

 2.9 Encode the following decimal numbers in BCD code:

(a) 46 (b) 327.89 (c) 20.305

2.10 Encode the decimal numbers in Problem 2.9 to Excess-3 code.
2.11 Encode the decimal number 46 to Gray code.
2.12 Use the 6-bit internal code to represent the statement.

P = 3 * Q

2.13 Write your full name in

(a) ASCII code (b) EBCDIC code (c) 6-bit internal code

Include blanks wherever necessary.
2.14 Attach an even parity bit as MSB for

(a) ASCII code (b) EBCDIC code

2.15 Repeat Problem 2.14 for odd parity.
2.16 Find the number of bits required to encode:

(a) 56 elements of information (b) 130 elements of information

2.17 Write 8-bit ASCII code (parity and 7-bit code) obtained in Problems 2.14 and 2.15 in hexadecimal 
format.

2.18 Develop the binary subtraction rules using one’s complement representation for negative numbers.
2.19 How many bits of memory are required for storing 100 names of a group of people, assuming that no 

name occupies more than 20 characters (including spaces)? Assume 7-bit ASCII code with parity bit.
2.20 A line printer is capable of printing 132 characters in a single line and each character is represented by 

ASCII code. How many bits are required to print each line?
2.21 How many words can be added to code A, in Example 2.44, without changing its error-detection and 

correction capabilities? Give a possible set of such words. Is this set unique?
2.22 Find the number and positions of parity bits to be added to construct Hamming code for an 8-bit data 

word.
2.23 Determine Hamming code sequence with odd parity for natural BCD for making it an error correcting 

code.
2.24 For ASCII code words 1010010 and 1010000

(a) determine the distance between them.
(b) Determine Hamming code words and distance between them.

2.25 Construct Hamming codes for the following 8-bits words

(a) 10101010 (b) 00000000 (c) 11111111

2.26 For some 8-bit data words, the following Hamming code words are received. Determine the correct 
data words. Assume even parity check.

(a) 000011101010 (b) 101110000110 (c) 101111110100
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